Telegram Group & Telegram Channel
🔥 Огонь и горение в космосе 💫

На Земле под действием гравитации нагретый воздух поднимается и расширяется, и огонь приобретает форму капли. В условиях микрогравитации на МКС огонь имеет форму шара. Сгорающее вещество встречает молекулы кислорода, свободно перемещаясь во всех направлениях, создает сферическое пламя. Голубой цвет обусловлен образованием небольшого количества сажи, которая при низкой температуре светится только в инфракрасном диапазоне.

В отсутствие гравитации пламя приобретает форму сферы. Это объясняется тем, что в условиях невесомости нет восходящего движения воздуха и конвекции тёплых и холодных его слоёв не происходит. Пламени не хватает для горения притока свежего воздуха, содержащего кислород, поэтому оно получается меньше и холоднее. Привычный оранжевый цвет пламени вызван свечением частичек сажи, которые поднимаются вверх с горячим потоком воздуха. В невесомости пламя приобретает голубой цвет, потому что сажи образуется мало, а та, что есть, из-за пониженной температуры будет светиться только в инфракрасном диапазоне. И горит оно недолго: отсутствие конвекции неизбежно приводит к самозатуханию пламени. Воздух вокруг сферы рано или поздно насыщается продуктами горения настолько, что блокируют доступ молекул кислорода и пламя гаснет. Поэтому на космических кораблях и орбитальных станциях при возгорании в первую очередь отключается система искусственной циркуляции воздуха.

Первый серьезный эксперимент по изучению горения в условиях невесомости провели наши соотечественники на борту станции «Мир». Для эксперимента использовались восковые свечи. В обычных условиях каждая свеча сгорала примерно за 10 минут, однако в космических условиях это время увеличилось до 3/4 часа. При этом пламя каждой свечи имело голубоватый цвет и было едва заметно, так что его просто не удавалось снять на видеокамеру. Для доказательства процесса горения в район пламени вносились кусочки воска. По их оплавлению и можно было утверждать, что происходит процесс горения. Этот результат нельзя было назвать неожиданным, так как в условиях невесомости нет постоянного притока кислорода за счет замены более легкого нагретого воздуха, на более плотный холодный. В космосе и холодный, и теплый воздух ничего не весят, поэтому теплый воздух и не стремится вверх. В таких условиях горение возможно исключительно за счет молекулярной диффузии или с помощью принудительной вентиляции.

Проводили свои эксперименты по горению на космических челноках и американцы. Они использовали шарики газовой смеси, которые в земных условиях быстро сгорали. А вот в космосе эти шарики горели по несколько часов, причем энергия, выделяемая при сгорании, была настолько мала, что могла фиксироваться только точными приборами. Наиболее интересным и показательным опытом по горению в космосе оказался эксперимент FLEX, который состоялся в 2011 году на борту Международной космической станции. В специальных камерах поджигались пузырьки гептана и метанола. В земных условиях за счет гравитации и тяги пламя имеет вытянутую вверх структуру, в чем несложно убедиться, если зажечь спичку или свечу. Однако в условиях микрогравитации огонь, к удивлению ученых, повел себя иначе. Вместо привычной вытянутой формы пламя оказалось шарообразным, причем имело ярко выраженный голубой оттенок. До сих пор все было ожидаемо, поскольку топливо с кислородом в невесомости встречаются в относительно тонком сферическом слое. А затем началось неожиданное — после выгорания кислорода в этом сферическом слое пламя не погасало, как ожидалось, а переходило в стадию холодного горения. В этой стадии огонь горит настолько слабо, что его увидеть невозможно. Однако, стоит доставить к очагу горения кислород и топливо, как пламя вспыхнет с новой силой. Стадия холодного горения гептана и метанола, наблюдаемая на МКС, имела температуру от 227 до 527 градусов, при этом выделяются гораздо более токсичные угарный газ (сказывается недостаток кислорода) и формальдегид. #physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/physics_lib/14061
Create:
Last Update:

🔥 Огонь и горение в космосе 💫

На Земле под действием гравитации нагретый воздух поднимается и расширяется, и огонь приобретает форму капли. В условиях микрогравитации на МКС огонь имеет форму шара. Сгорающее вещество встречает молекулы кислорода, свободно перемещаясь во всех направлениях, создает сферическое пламя. Голубой цвет обусловлен образованием небольшого количества сажи, которая при низкой температуре светится только в инфракрасном диапазоне.

В отсутствие гравитации пламя приобретает форму сферы. Это объясняется тем, что в условиях невесомости нет восходящего движения воздуха и конвекции тёплых и холодных его слоёв не происходит. Пламени не хватает для горения притока свежего воздуха, содержащего кислород, поэтому оно получается меньше и холоднее. Привычный оранжевый цвет пламени вызван свечением частичек сажи, которые поднимаются вверх с горячим потоком воздуха. В невесомости пламя приобретает голубой цвет, потому что сажи образуется мало, а та, что есть, из-за пониженной температуры будет светиться только в инфракрасном диапазоне. И горит оно недолго: отсутствие конвекции неизбежно приводит к самозатуханию пламени. Воздух вокруг сферы рано или поздно насыщается продуктами горения настолько, что блокируют доступ молекул кислорода и пламя гаснет. Поэтому на космических кораблях и орбитальных станциях при возгорании в первую очередь отключается система искусственной циркуляции воздуха.

Первый серьезный эксперимент по изучению горения в условиях невесомости провели наши соотечественники на борту станции «Мир». Для эксперимента использовались восковые свечи. В обычных условиях каждая свеча сгорала примерно за 10 минут, однако в космических условиях это время увеличилось до 3/4 часа. При этом пламя каждой свечи имело голубоватый цвет и было едва заметно, так что его просто не удавалось снять на видеокамеру. Для доказательства процесса горения в район пламени вносились кусочки воска. По их оплавлению и можно было утверждать, что происходит процесс горения. Этот результат нельзя было назвать неожиданным, так как в условиях невесомости нет постоянного притока кислорода за счет замены более легкого нагретого воздуха, на более плотный холодный. В космосе и холодный, и теплый воздух ничего не весят, поэтому теплый воздух и не стремится вверх. В таких условиях горение возможно исключительно за счет молекулярной диффузии или с помощью принудительной вентиляции.

Проводили свои эксперименты по горению на космических челноках и американцы. Они использовали шарики газовой смеси, которые в земных условиях быстро сгорали. А вот в космосе эти шарики горели по несколько часов, причем энергия, выделяемая при сгорании, была настолько мала, что могла фиксироваться только точными приборами. Наиболее интересным и показательным опытом по горению в космосе оказался эксперимент FLEX, который состоялся в 2011 году на борту Международной космической станции. В специальных камерах поджигались пузырьки гептана и метанола. В земных условиях за счет гравитации и тяги пламя имеет вытянутую вверх структуру, в чем несложно убедиться, если зажечь спичку или свечу. Однако в условиях микрогравитации огонь, к удивлению ученых, повел себя иначе. Вместо привычной вытянутой формы пламя оказалось шарообразным, причем имело ярко выраженный голубой оттенок. До сих пор все было ожидаемо, поскольку топливо с кислородом в невесомости встречаются в относительно тонком сферическом слое. А затем началось неожиданное — после выгорания кислорода в этом сферическом слое пламя не погасало, как ожидалось, а переходило в стадию холодного горения. В этой стадии огонь горит настолько слабо, что его увидеть невозможно. Однако, стоит доставить к очагу горения кислород и топливо, как пламя вспыхнет с новой силой. Стадия холодного горения гептана и метанола, наблюдаемая на МКС, имела температуру от 227 до 527 градусов, при этом выделяются гораздо более токсичные угарный газ (сказывается недостаток кислорода) и формальдегид. #physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Share with your friend now:
tg-me.com/physics_lib/14061

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Physics Math Code from us


Telegram Physics.Math.Code
FROM USA